The generator matrix

 1  0  0  1  1  1  1  1  1  6  1  1 X+6  1 2X+3  1 2X  1 X+3  1 2X  1  1  1  1  1  1  1  1  1  1  1  1  0 2X  1  3  1  1  X  1  X  1  1 2X+6 2X+6  1  1  1  1  1  1  1  1  1
 0  1  0  6  1  7  5  X  8  1 2X+7 2X+5  1 X+3  1 2X X+6 2X+1  1  5  1 X+5 X+2 X+6 2X+8 2X+6  4 X+7  6 X+1 2X+8 X+8  1  X  1  3  1 X+4  X  1 X+4  1  6  8 2X+3  1 2X+4 2X+7 X+5  5 X+2  8 2X+3  3 2X+3
 0  0  1 2X+7 2X+1  6 X+2 X+8 2X  1 2X+5  7  5 2X+3 X+6  4  1 2X+4 X+4 2X+8 2X+5  7 2X X+3 2X+3 X+8 X+6 2X+2  4 X+4 X+3  2  8  1  0 2X+3 X+7  3 2X+2 2X+7 X+6 2X+5  5  0  1 X+8  2  4 X+8 X+3 2X+1 2X+4  3 X+6 X+7

generates a code of length 55 over Z9[X]/(X^2+6,3X) who�s minimum homogenous weight is 104.

Homogenous weight enumerator: w(x)=1x^0+654x^104+798x^105+1584x^106+2796x^107+1676x^108+1494x^109+2700x^110+1500x^111+1242x^112+2130x^113+660x^114+954x^115+918x^116+456x^117+72x^118+18x^119+12x^120+6x^122+12x^125

The gray image is a code over GF(3) with n=495, k=9 and d=312.
This code was found by Heurico 1.16 in 0.699 seconds.